Copied to
clipboard

G = C8⋊C22order 32 = 25

The semidirect product of C8 and C22 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial, rational

Aliases: C8⋊C22, D82C2, C4.14D4, SD161C2, D42C22, C4.5C23, Q82C22, C22.5D4, M4(2)⋊1C2, C4○D42C2, (C2×D4)⋊5C2, C2.15(C2×D4), (C2×C4).6C22, 2-Sylow(PGammaL(2,9)), Aut(D8), Hol(C8), SmallGroup(32,43)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C8⋊C22
C1C2C4C2×C4C2×D4 — C8⋊C22
C1C2C4 — C8⋊C22
C1C2C2×C4 — C8⋊C22
C1C2C2C4 — C8⋊C22

Generators and relations for C8⋊C22
 G = < a,b,c | a8=b2=c2=1, bab=a3, cac=a5, bc=cb >

2C2
4C2
4C2
4C2
2C4
2C22
2C22
2C22
4C22
4C22
2D4
2D4
2C2×C4
2C23

Character table of C8⋊C22

 class 12A2B2C2D2E4A4B4C8A8B
 size 11244422444
ρ111111111111    trivial
ρ2111-11-1111-1-1    linear of order 2
ρ311-11-1-11-111-1    linear of order 2
ρ411-1-1-111-11-11    linear of order 2
ρ511-111-11-1-1-11    linear of order 2
ρ611-1-1111-1-11-1    linear of order 2
ρ71111-1111-1-1-1    linear of order 2
ρ8111-1-1-111-111    linear of order 2
ρ9222000-2-2000    orthogonal lifted from D4
ρ1022-2000-22000    orthogonal lifted from D4
ρ114-4000000000    orthogonal faithful

Permutation representations of C8⋊C22
On 8 points - transitive group 8T15
Generators in S8
(1 2 3 4 5 6 7 8)
(2 4)(3 7)(6 8)
(1 5)(3 7)

G:=sub<Sym(8)| (1,2,3,4,5,6,7,8), (2,4)(3,7)(6,8), (1,5)(3,7)>;

G:=Group( (1,2,3,4,5,6,7,8), (2,4)(3,7)(6,8), (1,5)(3,7) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8)], [(2,4),(3,7),(6,8)], [(1,5),(3,7)]])

G:=TransitiveGroup(8,15);

On 16 points - transitive group 16T35
Generators in S16
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 9)(2 12)(3 15)(4 10)(5 13)(6 16)(7 11)(8 14)
(2 6)(4 8)(10 14)(12 16)

G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,9)(2,12)(3,15)(4,10)(5,13)(6,16)(7,11)(8,14), (2,6)(4,8)(10,14)(12,16)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,9)(2,12)(3,15)(4,10)(5,13)(6,16)(7,11)(8,14), (2,6)(4,8)(10,14)(12,16) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,9),(2,12),(3,15),(4,10),(5,13),(6,16),(7,11),(8,14)], [(2,6),(4,8),(10,14),(12,16)]])

G:=TransitiveGroup(16,35);

On 16 points - transitive group 16T38
Generators in S16
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 14)(2 9)(3 12)(4 15)(5 10)(6 13)(7 16)(8 11)
(1 14)(2 11)(3 16)(4 13)(5 10)(6 15)(7 12)(8 9)

G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,14)(2,9)(3,12)(4,15)(5,10)(6,13)(7,16)(8,11), (1,14)(2,11)(3,16)(4,13)(5,10)(6,15)(7,12)(8,9)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,14)(2,9)(3,12)(4,15)(5,10)(6,13)(7,16)(8,11), (1,14)(2,11)(3,16)(4,13)(5,10)(6,15)(7,12)(8,9) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,14),(2,9),(3,12),(4,15),(5,10),(6,13),(7,16),(8,11)], [(1,14),(2,11),(3,16),(4,13),(5,10),(6,15),(7,12),(8,9)]])

G:=TransitiveGroup(16,38);

On 16 points - transitive group 16T45
Generators in S16
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 9)(2 12)(3 15)(4 10)(5 13)(6 16)(7 11)(8 14)
(1 12)(2 9)(3 14)(4 11)(5 16)(6 13)(7 10)(8 15)

G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,9)(2,12)(3,15)(4,10)(5,13)(6,16)(7,11)(8,14), (1,12)(2,9)(3,14)(4,11)(5,16)(6,13)(7,10)(8,15)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,9)(2,12)(3,15)(4,10)(5,13)(6,16)(7,11)(8,14), (1,12)(2,9)(3,14)(4,11)(5,16)(6,13)(7,10)(8,15) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,9),(2,12),(3,15),(4,10),(5,13),(6,16),(7,11),(8,14)], [(1,12),(2,9),(3,14),(4,11),(5,16),(6,13),(7,10),(8,15)]])

G:=TransitiveGroup(16,45);

C8⋊C22 is a maximal subgroup of
C4.3S4  C32⋊D8⋊C2  C62.12D4
 D4⋊D2p: D44D4  D8⋊S3  D4⋊D6  D8⋊D5  D4⋊D10  D8⋊D7  D4⋊D14  D4⋊D22 ...
 D4.D2p: D4.8D4  D4.3D4  D4.4D4  D4○D8  D4○SD16  Q83D6  D126C22  D40⋊C2 ...
 D4p⋊C22: D8⋊C22  C8⋊D6  C8⋊D10  C8⋊D14  C8⋊D22  C8⋊D26 ...
C8⋊C22 is a maximal quotient of
C23.36D4  C23.37D4  M4(2)⋊C4  SD16⋊C4  D8⋊C4  C4⋊SD16  D42Q8  C4.Q16  D4.Q8  C23.46D4  C23.19D4  C23.48D4  C42.28C22  C42.29C22  C8⋊Q8  C32⋊D8⋊C2  C62.12D4
 D4⋊D2p: C22⋊D8  D4⋊D4  C4⋊D8  D8⋊S3  D4⋊D6  D8⋊D5  D4⋊D10  D8⋊D7 ...
 C8⋊D2p: C8⋊D4  C82D4  C83D4  C8⋊D6  Q83D6  C8⋊D10  D40⋊C2  C8⋊D14 ...
 D4.D2p: C22⋊SD16  D4.2D4  D126C22  D4.D10  D4.D14  D446C22  D526C22 ...

Polynomial with Galois group C8⋊C22 over ℚ
actionf(x)Disc(f)
8T15x8-x4-1-216·54

Matrix representation of C8⋊C22 in GL4(ℤ) generated by

0010
000-1
0100
1000
,
1000
0-100
000-1
00-10
,
1000
0100
00-10
000-1
G:=sub<GL(4,Integers())| [0,0,0,1,0,0,1,0,1,0,0,0,0,-1,0,0],[1,0,0,0,0,-1,0,0,0,0,0,-1,0,0,-1,0],[1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1] >;

C8⋊C22 in GAP, Magma, Sage, TeX

C_8\rtimes C_2^2
% in TeX

G:=Group("C8:C2^2");
// GroupNames label

G:=SmallGroup(32,43);
// by ID

G=gap.SmallGroup(32,43);
# by ID

G:=PCGroup([5,-2,2,2,-2,-2,101,302,483,248,58]);
// Polycyclic

G:=Group<a,b,c|a^8=b^2=c^2=1,b*a*b=a^3,c*a*c=a^5,b*c=c*b>;
// generators/relations

Export

Subgroup lattice of C8⋊C22 in TeX
Character table of C8⋊C22 in TeX

׿
×
𝔽