p-group, metabelian, nilpotent (class 3), monomial, rational
Aliases: C8⋊C22, D8⋊2C2, C4.14D4, SD16⋊1C2, D4⋊2C22, C4.5C23, Q8⋊2C22, C22.5D4, M4(2)⋊1C2, C4○D4⋊2C2, (C2×D4)⋊5C2, C2.15(C2×D4), (C2×C4).6C22, 2-Sylow(PGammaL(2,9)), Aut(D8), Hol(C8), SmallGroup(32,43)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊C22
G = < a,b,c | a8=b2=c2=1, bab=a3, cac=a5, bc=cb >
Character table of C8⋊C22
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 8A | 8B | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8)
(2 4)(3 7)(6 8)
(1 5)(3 7)
G:=sub<Sym(8)| (1,2,3,4,5,6,7,8), (2,4)(3,7)(6,8), (1,5)(3,7)>;
G:=Group( (1,2,3,4,5,6,7,8), (2,4)(3,7)(6,8), (1,5)(3,7) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8)], [(2,4),(3,7),(6,8)], [(1,5),(3,7)]])
G:=TransitiveGroup(8,15);
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 9)(2 12)(3 15)(4 10)(5 13)(6 16)(7 11)(8 14)
(2 6)(4 8)(10 14)(12 16)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,9)(2,12)(3,15)(4,10)(5,13)(6,16)(7,11)(8,14), (2,6)(4,8)(10,14)(12,16)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,9)(2,12)(3,15)(4,10)(5,13)(6,16)(7,11)(8,14), (2,6)(4,8)(10,14)(12,16) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,9),(2,12),(3,15),(4,10),(5,13),(6,16),(7,11),(8,14)], [(2,6),(4,8),(10,14),(12,16)]])
G:=TransitiveGroup(16,35);
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 14)(2 9)(3 12)(4 15)(5 10)(6 13)(7 16)(8 11)
(1 14)(2 11)(3 16)(4 13)(5 10)(6 15)(7 12)(8 9)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,14)(2,9)(3,12)(4,15)(5,10)(6,13)(7,16)(8,11), (1,14)(2,11)(3,16)(4,13)(5,10)(6,15)(7,12)(8,9)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,14)(2,9)(3,12)(4,15)(5,10)(6,13)(7,16)(8,11), (1,14)(2,11)(3,16)(4,13)(5,10)(6,15)(7,12)(8,9) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,14),(2,9),(3,12),(4,15),(5,10),(6,13),(7,16),(8,11)], [(1,14),(2,11),(3,16),(4,13),(5,10),(6,15),(7,12),(8,9)]])
G:=TransitiveGroup(16,38);
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 9)(2 12)(3 15)(4 10)(5 13)(6 16)(7 11)(8 14)
(1 12)(2 9)(3 14)(4 11)(5 16)(6 13)(7 10)(8 15)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,9)(2,12)(3,15)(4,10)(5,13)(6,16)(7,11)(8,14), (1,12)(2,9)(3,14)(4,11)(5,16)(6,13)(7,10)(8,15)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,9)(2,12)(3,15)(4,10)(5,13)(6,16)(7,11)(8,14), (1,12)(2,9)(3,14)(4,11)(5,16)(6,13)(7,10)(8,15) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,9),(2,12),(3,15),(4,10),(5,13),(6,16),(7,11),(8,14)], [(1,12),(2,9),(3,14),(4,11),(5,16),(6,13),(7,10),(8,15)]])
G:=TransitiveGroup(16,45);
C8⋊C22 is a maximal subgroup of
C4.3S4 C32⋊D8⋊C2 C62.12D4
D4⋊D2p: D4⋊4D4 D8⋊S3 D4⋊D6 D8⋊D5 D4⋊D10 D8⋊D7 D4⋊D14 D4⋊D22 ...
D4.D2p: D4.8D4 D4.3D4 D4.4D4 D4○D8 D4○SD16 Q8⋊3D6 D12⋊6C22 D40⋊C2 ...
D4p⋊C22: D8⋊C22 C8⋊D6 C8⋊D10 C8⋊D14 C8⋊D22 C8⋊D26 ...
C8⋊C22 is a maximal quotient of
C23.36D4 C23.37D4 M4(2)⋊C4 SD16⋊C4 D8⋊C4 C4⋊SD16 D4⋊2Q8 C4.Q16 D4.Q8 C23.46D4 C23.19D4 C23.48D4 C42.28C22 C42.29C22 C8⋊Q8 C32⋊D8⋊C2 C62.12D4
D4⋊D2p: C22⋊D8 D4⋊D4 C4⋊D8 D8⋊S3 D4⋊D6 D8⋊D5 D4⋊D10 D8⋊D7 ...
C8⋊D2p: C8⋊D4 C8⋊2D4 C8⋊3D4 C8⋊D6 Q8⋊3D6 C8⋊D10 D40⋊C2 C8⋊D14 ...
D4.D2p: C22⋊SD16 D4.2D4 D12⋊6C22 D4.D10 D4.D14 D44⋊6C22 D52⋊6C22 ...
action | f(x) | Disc(f) |
---|---|---|
8T15 | x8-x4-1 | -216·54 |
Matrix representation of C8⋊C22 ►in GL4(ℤ) generated by
0 | 0 | 1 | 0 |
0 | 0 | 0 | -1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | 0 | -1 |
0 | 0 | -1 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
G:=sub<GL(4,Integers())| [0,0,0,1,0,0,1,0,1,0,0,0,0,-1,0,0],[1,0,0,0,0,-1,0,0,0,0,0,-1,0,0,-1,0],[1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1] >;
C8⋊C22 in GAP, Magma, Sage, TeX
C_8\rtimes C_2^2
% in TeX
G:=Group("C8:C2^2");
// GroupNames label
G:=SmallGroup(32,43);
// by ID
G=gap.SmallGroup(32,43);
# by ID
G:=PCGroup([5,-2,2,2,-2,-2,101,302,483,248,58]);
// Polycyclic
G:=Group<a,b,c|a^8=b^2=c^2=1,b*a*b=a^3,c*a*c=a^5,b*c=c*b>;
// generators/relations
Export
Subgroup lattice of C8⋊C22 in TeX
Character table of C8⋊C22 in TeX